Introduction

The dynamic nature of diabetes and its impact on multiple aspects of one’s life requires individuals to make frequent and ongoing self-management decisions. Therefore, the title of this chapter has been modified to include self-management education (SME) and self-management support (SMS), in recognition of the growing evidence and benefit of SMS for individuals living with diabetes, particularly when combined with SME (1).

SME is a process to facilitate individuals in decision-making, resulting in improvements in variables, such as knowledge, attitudes and self-efficacy, as well as improvements in healthy behaviours and clinical outcomes (2). SME is defined as a systematic intervention that involves active participation by the individual in self–monitoring of health parameters and/or decision–making with the application of knowledge and skills (3). It also recognizes that patient–provider collaboration, approaches and the development of problem-solving skills are crucial for sustained self–care (4). SMS includes activities that support the implementation and maintenance of behaviours for ongoing diabetes self–management, including education, behaviour modification, psychosocial and/or clinical support (5,6). The goal of SME and SMS is to foster opportunities for people with diabetes to become informed and motivated to continually engage in effective diabetes self–management practices and behaviours. To date, a growing body of research evidence indicates that the combination of both SME and SMS is most advantageous for improving glycemic control, self–efficacy, self–care behaviours (i.e. monitoring of blood glucose and healthy eating) and reducing diabetes distress and foot complications (1,6).

Self-Management Education

Several meta-analyses have demonstrated that SME is associated with clinically important benefits in people with diabetes, such as reductions in glycated hemoglobin (A1C) (13,7–11) and improvements in cardiovascular (CV) risk factors and reductions in foot ulcerations, infections and amputations (1). A large population–based cohort study of 27,278 people with type 2 diabetes and no known previous cardiovascular disease (CVD) found that attending structured diabetes education was associated with a reduction in: all–cause mortality of 44%, first CVD episode of 20% and stroke of 30% (12). A large retrospective cohort study of 62,790 individuals who had had at least 1 diabetes education session demonstrated lower diabetes–related health–care expenditures after 12 months compared to individuals who did not receive diabetes education (13). Improved quality of life has also been demonstrated (14), in addition to sustained weight loss and CV fitness for up to 4 years following education (15). SME also improved short– and long–term (1 year) self–efficacy and reduced diabetes–related stress (16).

Defining SME

Diabetes SME has evolved from traditional didactic teaching to a variety of educational, psychological and behavioural interventions, and collaborative teaching methods, tailored to the individual’s specific needs (17). SME comprises any educational processes that provide individuals with the knowledge and skills to inform decisions and increase their capacity and confidence to apply these
skills in daily life situations (4). Interventions and strategies for ongoing self-management of medical, behavioural and emotional aspects of care may be integrated into knowledge and technical skills training (1).

A review of 18 systematic reviews found that educational interventions that emphasize knowledge, emotional and behaviour support, coping strategies and self-management training were associated with improved glycemic control at all ages (1). Additionally, SME strategies that incorporate individual goal setting (16), collaboration, problem solving (18), patient empowerment strategies (12) and tailored education (1) were effective in improving glycemic control and self-care outcomes for individuals with diabetes. Furthermore, SME results in positive changes in diabetes-related knowledge (19), as well as psychological (20–23) and behavioural (20,24) domains. Basic knowledge and skills for SME include monitoring of relevant health parameters, healthy eating, physical activity, pharmacotherapy, prevention and management of hypo- and hyperglycemia, and prevention and surveillance of complications. Skill training includes self-monitoring of blood glucose (SMBG); making healthy dietary choices; incorporating physical activity; stress management; and medication adherence and adjustment (25,26).

Finally, research demonstrates that combining complex cognitive and affective (emotional) interventions to support the detection of problems, identify possible causes and generate corrective actions, were most effective in improving glycemic control (27). The acquisition of knowledge may be augmented with cognitive behavioural interventions to achieve longer-term change in self-care behaviours (7,20,22,28). These include cognitive restructuring, problem solving, cognitive behaviour therapy (CBT), stress management, goal setting and relaxation techniques. All of these recognize that personal awareness and alteration of causative (possibly unconscious) thoughts and emotions are essential for effective behaviour change (29).

Cognitive behavioural interventions share common elements, including a patient-centred approach, shared decision-making, the development of problem-solving skills, and the use of action plans directed toward patient-chosen goals, (20,22,30) and may be used in both individual and group settings (17,20). In general, group settings are more effective for short-term glycemic control, whereas group interventions combined with individual follow-up sessions result in lower glycated hemoglobin (A1C) levels than either setting alone (31). Cognitive-behavioural interventions are effective in lowering A1C (8,32,33), improving quality of life (34,35) and increasing self-care behaviours (20,32), although other studies show mixed results (7,28). A meta-analysis of behavioural interventions for type 1 diabetes found a reduction in A1C of −0.29% after 6 months (9). A network meta-analysis found that 11 or more hours of SME delivered via the Internet is effective at improving measures of glycemic control and diabetes knowledge in adults with type 2 diabetes compared with usual care (1,41). Internet-delivered diabetes education may increase access for many individuals and they can engage in self-paced learning. The ability to interact with or message an educator/health-care provider is an attractive option to individuals (41); however, most studies report that Internet/web usage declines over time (2,41). New online materials may need to be added for ongoing engagement (41). The use of interactive modules that allow for tracking and tailored feedback, the addition of personalized components from counselors or peer supporters, and/or emails and telephone contacts allow for, and contribute to, the development of online communities (42).

A meta-analysis of computer-based diabetes self-management interventions (via clinics, the Internet and mobile phone apps) to manage type 2 diabetes appears to have a small beneficial effect on A1C (−0.2%), and this effect was larger in the mobile phone subgroup (−0.5%) (43). However, there was no evidence of benefit for other biological, cognitive, behavioural or emotional outcomes (43). Mobile applications, especially text messaging, may also be used as educational tools for improving outcome among people with type 2 diabetes (2,44). In a meta-analysis of 13 trials, a difference in A1C of 0.53% was reported in the intervention compared to usual care. The acceptability of such approaches are mixed as some report high satisfaction, while others report participants requesting to stop the messages before the end of the intervention, and low acceptability for challenging interfaces or inexperienced participants with mobile web use (2). Age, diabetes duration, A1C, and type and length of the intervention may also have implications on the effectiveness of such approaches (44).

**Tailoring SME**

The content and skill-training components of SME are most effective when individualized according to: the type of diabetes and recommended therapy; the individual’s ability for learning and readiness for change; the context of one’s cultural beliefs, health beliefs and preferences; literacy level; socioeconomic barriers and other health challenges (8,31,45). Tailoring SME to the individual is paramount. All trials evaluating a culturally appropriate education module (incorporating cultural or faith traditions, values and beliefs, delivery in the person’s preferred language, adapted cultural dietary advice, the person’s needs and/or involving family members) note improvements in diabetes-related knowledge, self-management behaviours and clinical outcomes (46,47). Family and culturally tailored interventions are particularly relevant.
in minority communities. Several randomized controlled trials and systematic reviews demonstrate that culturally competent health-care interventions result in lower A1C levels and improvements in diabetes-related knowledge and quality of life (34,37,48). Family and social support positively impact metabolic control and self-care behaviours (37,48,49). In both type 1 and type 2 diabetes, interventions that target the family’s ability to cope with stress result in fewer conflicts, and having partners involved in care positively impacts glycemic control (49).

Reviews and meta-analyses conclude that culturally appropriate health education for type 2 diabetes has short-to-medium term effects on glycemic control (mean reduction of A1C ranging from −0.2% to −0.5%) up to 24 months and improved scores on knowledge of diabetes and healthy behaviours for up to 6 months (47,50). Studies identifying program characteristics associated with greater success for minority populations show larger reductions in A1C with individual and face-to-face delivered educational programs and peer educators, than with group-based diabetes education programming (46,51). Additionally, content and materials geared toward people with low literacy and numeracy can be successful in improving outcomes, such as A1C, self-efficacy and BP (52). Training health-care professionals about health literacy, numeracy and clear communication principles to address low literacy can also be effective (53,54).

Finally, self-identification of problems or need for self-care improvement by the individual is critical to all cognitive-behavioural interventions (32,55). The health-care provider’s role is to collaboratively facilitate this awareness or identification of issues (4). Standardized instruments, such as knowledge questionnaires, the Problem Areas in Diabetes (PAID) (56), Diabetes Self-Efficacy (DSE) (16), Self-care Inventory-Revised (SCI-R2005) (57), or Summary of Diabetes Self-Care Activities (58) may have value in this process (59), although they have been used mainly for research purposes.

**Self-Management Support**

SMS (also addressed in the Organization of Care chapter, p. S27) refers to policies and people that support self-management behaviours across the lifespan, and are not necessarily specific to educational processes. There is growing evidence that short-term benefits of SME can be further sustained with SMS (1,6). Although historically, diabetes educators have provided SMS, educators are increasingly challenged to offer and maintain SMS, such as frequent and ongoing supportive follow up and case management due to expanding caseloads, complexity of individual diabetes care and limited time and resources (6).

**Defining SMS**

Diabetes SMS is defined as strategies that augment an individual’s ability to self-manage their diabetes (6). Such support may include frequent follow up by a health-care provider, diabetes coaching, peer support or community health workers, linkages with community support groups or interest groups. To date, a growing body of research evidence indicates that combining SME and SMS is most advantageous for improving glycemic control, self-efficacy and self-care behaviours, and reducing diabetes distress and foot complications (1,6,16).

**Delivering SMS**

The availability of several different technologies, including the Internet, web-based education and communities, text messaging (60–64), email, automatic telephone reminders (65) and telehealth/telephone education (66–69) provide an effective and time-efficient means of providing SMS. Although the delivery strategy for SMS appears to be dependent on the population and context, evidence suggests that frequent interactions with text message systems on mobile phones when combined with the Internet to relay blood glucose records are associated with improved glycemic control (1,43,44,70). Additional systematic reviews of healthy behaviour programs for those living with type 2 diabetes found that web-based programs are effective in increasing physical activity (43,71), decreasing dietary fat intake (43) and improving overall dietary intake (42). Finally, several small trials demonstrate improved outcomes when utilizing reminder systems and scheduled follow ups compared to controls. Outcomes include improving SMBG (60,65,71,72), improved adherence to treatment algorithms (73), improved self-efficacy (6,66–68) and quality of life (74), as well as improved clinical outcomes, including reductions in A1C (61–64,67,70,75,76) and weight (69,77).

Peer facilitators may augment multidisciplinary team practices and SME in providing SMS. Studies of peer support show a significant reduction in A1C by −0.57% with individual-based interventions providing the greatest A1C reduction (−0.91%) compared to group or individual and group combined (78). The superiority of peer-delivered programs over similar programs delivered by health professionals is yet to be demonstrated in general populations with type 2 diabetes (79,80). Studies of the incremental effect of peer educators show variability in terms of behaviour change and clinical outcomes (81,82). Although training and scope of practice of peer leaders or community support workers is not clearly articulated in the literature, some examples exist for which the role has been successfully created, implemented and evaluated in clinical and community settings (78,83).

**Tailoring SMS**

An SMS intervention that is most readily available for tailoring includes frequent follow up with a diabetes educator (84). A telephone-based support intervention (4 phone calls in one year), following education, to reach a lower-income minority population living with diabetes, found that participants who receive telephone contact have an A1C 0.9% lower than those who did not, suggesting that a telephone intervention by diabetes nurse educators is a clinically effective strategy to support diverse populations living with diabetes (84).

Community health workers may also play an important role in tailoring SMS interventions to ethnically diverse populations. A systematic review found that access to a community health worker in a minority population results in a decrease in A1C of −0.37% to −0.75%, with the greatest improvement in A1C at 3 months (83). Peer support and community health workers may offer SMS and engage with individuals with diabetes in the community setting, primarily in faith-based settings, community health centres and at community events (83).

Finally, diabetes coaching is emerging as a promising SMS intervention that offers opportunities for personalized support, depending on an individual’s self-management needs and preferences. A recent systematic review identified the coaching role as comprised of goal setting, knowledge acquisition, individualized care and frequent/ongoing follow up (85). The review found that access to diabetes coaching led to a reduction in A1C of −0.32% when offered with usual care over a period of 3 months to 1 year (85); however, the training and regulatory requirements for diabetes coaches have not been clarified, and significant variations in scope of practice remain in the Canadian health-care setting.

**Conclusions**

Evidence supports the beneficial effect of SME on diabetes clinical, emotional and behavioural outcomes. Increasingly, multifaceted
programs that incorporate behavioural/psychosocial interventions, as well as knowledge and skills training are more effective than didactic educational programs or programs which focus on single strategies (1,7,9,17,45). Furthermore, SMS, when coupled with SME, is complementary and sustains the short-term benefits seen with SME (1,6). Interventions that include face-to-face delivery, a cognitive-behavioural method and the practical application of content are more likely to improve glycemic control (33,45,86). The most effective behavioural interventions involve a patient-centred approach, shared decision-making, the development of problem solving skills and the use of action plans directed toward patient-chosen goals (Figure 1).

**RECOMMENDATIONS**

1. People with diabetes should be offered timely SME that is tailored to enhance self-care practices and behaviours [Grade A, Level 1A (1,7,9,10,38,45)].

2. All people with diabetes who are able should be taught how to self-manage their diabetes [Grade B, Level 2 (16,38,40)].

3. SME that incorporates cognitive-behavioural educational interventions, such as problem solving, goal setting, self-monitoring of health parameters and dietary modifications and physical activity, should be implemented for all able individuals with diabetes [Grade B, Level 2 (18,20,33,42,45,71,86,87)].

4. SME interventions may be offered in small group and/or one-on-one settings [Grade A, Level 1A (88,89) for type 2 diabetes; Grade D, Consensus for type 1 diabetes].

5. Interventions that increase participation and collaboration of the person with diabetes in health-care decision-making should be used by health-care providers [Grade B, Level 2 (38)].

6. Support for self-management should be offered to assist individuals in implementing and maintaining diabetes self-management [Grade B, Level 2 (1)] by offering any of the following: a) Peer-led support or community support workers [Grade B, Level 2 (6,78,83)] b) Diabetes coaching [Grade B, Level 2 (85)] c) Telephone follow up [Grade B, Level 2 (84)].

7. In both type 1 and type 2 diabetes, interventions that target the family’s ability to cope with stress or diabetes-related conflict should be included in educational interventions when indicated [Grade B, Level 2 (49)].

8. Technologies, such as Internet-based computer programs and glucose monitoring systems, brief text messages and mobile apps, may be used to support self-management in order to improve glycemic control [Grade A, Level 1A (44,70) for type 2 diabetes; Grade B, Level 2 (1) for type 1 diabetes].

9. Culturally appropriate SME and SMS, which may include peer or lay educators, may be used to increase diabetes-related knowledge and self-care behaviours and to improve glycemic control [Grade A, Level 1A (46,47,50)].

10. Adding literacy- and numeracy-sensitive materials to comprehensive diabetes management education and support programs may improve knowledge, self-efficacy and A1C outcomes for people with low literacy [Grade C, Level 3 (52)].

**Abbreviations:**

AIC, glycated hemoglobin; SME, self-management education; SMS, self-management support.

**Other Relevant Guidelines**

Organization of Diabetes Care, p. S27
Monitoring Glycemic Control, p. S47
Diabetes and Mental Health, p. S130
Type 1 Diabetes in Children and Adolescents, p. S234
Author Disclosures

Dr. Sherifali reports investigator-initiated funding from AstraZeneca. Lori Berard has received consulting and/or speaker fees from Bayer, Boehringer Ingelheim, Sanofi, Eli Lilly, Novo Nordisk, Janssen, AstraZeneca, and Merck. No other authors have anything to disclose.

References

Literature Review Flow Diagram for Chapter 7: Self-Management Education and Support

<table>
<thead>
<tr>
<th>Identification</th>
<th>Citations identified through database searches N=18,056</th>
<th>Additional citations identified through other sources N=10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening</td>
<td>Title &amp; abstract screening N=5,341</td>
<td>Citations excluded* N=4,650</td>
</tr>
<tr>
<td></td>
<td>Full-text screening for eligibility N=691</td>
<td>Citations excluded* N=396</td>
</tr>
<tr>
<td></td>
<td>Full-text reviewed by chapter authors N=295</td>
<td>Citations excluded* N=276</td>
</tr>
<tr>
<td></td>
<td>Studies requiring new or revised recommendations N=19</td>
<td></td>
</tr>
</tbody>
</table>

Citations after duplicates removed N=11,693

*Excluded based on: population, intervention/exposure, comparator/control or study design.


For more information, visit www.prisma-statement.org.